Bruegel l'Ancien - La tour de Babel (Vienne)

Identification de la langue d’un texte

 Identification de la langue d’un texte

Récemment, un article m’a rappelé qu’il était serait amusant de faire un système pour détecter de manière automatique la langue dans laquelle un texte est écrit. L’article en question parlait de complètement autre chose et ne faisait que reprendre les résultats d’un blog anglophone. Cependant, en présentant d’une certaine façon les distributions d’occurrence des lettres au sein de quelques langues européennes, je me suis souvenu que ces distributions donnaient une signature qu’on pouvait utiliser pour reconnaitre la langue d’un texte. Ce peut aussi d’ailleurs être utilisé pour briser les codes simples comme le chiffre de César tel que Simon Singh nous l’expliquait dans son excellent livre sur l’histoire des codes secrets.

Pour créer les signatures, on peut analyser la fréquence d’occurrence des lettres individuelles, mais aussi des séquences de deux lettres consécutives. Par exemple en français, la séquence « ch » est plus fréquente que « sh » ou « cz ». D’autres langues présenteront d’autres proportions pour ces même suites. Et pourquoi s’arrêter à deux ? On peut aussi répertorier les séquences de trois, quatre ou N lettres consécutives. C’est ce qui s’appelle des  n-grams. Ça ne se résume pas qu’aux lettres et ça ne sert pas qu’à détecter une langue, mais c’est le contexte dans lequel le présent projet va les utiliser.

Sommairement, il s’agit donc de :

  • Créer des signatures basées sur les n-grams pour différentes langues
  • Extraire la signature d’un texte inconnu dont on veut identifier la langue
  • Comparer sa signature avec celles des langues « apprises »
  • En déduire l’idiome du texte

La signature n’étant que l’histogramme des fréquences d’occurrence des différents n-grams.

Heu… mais pour quoi faire ?

Clarifions tout de suite un point : je n’en ai personnellement aucune utilité. Ce n’est ni lié à des sujets professionnels, ni à un quelconque outil qui pourrait me servir. La recherche sur le sujet est bien avancée et je ne cherche pas à l’approfondir. Tous les jours on peut d’ailleurs voir à l’œuvre des sites qui ont de très bons résultats dans le domaine. Cependant, la (relative) simplicité de mise en œuvre d’une solution à un problème qui peut sembler aussi complexe est fascinante.  C’est donc en pur dilettante que j’ai envie de jouer un peu avec ce problème.

D’un autre côté, bien que la solution soit conceptuellement simple, quelques détails pratiques font qu’il y a tout de même quelques petits défis à relever et questions à répondre. Comment trouver des données d’apprentissage ? Comment gérer les caractères internationaux, l’Unicode et les codages à nombre variable d’octets (par exemple l’UTF-8) ? Que faire de la ponctuation, des espaces, ou même des tags HTML dans le cas où les données viendraient de source web ? Quelle technique choisir pour mesurer la similarité des signatures (vecteurs de cardinalité et de dimensions différentes) ? Comment présenter les résultats ? Bref, suffisamment d’interrogations pour rendre le projet intéressant.

 Étapes du projet

Avant de me lancer, j’ai détaillé sommairement les grands blocs ou thèmes sur lesquels il faut travailler. Je les présente ci-dessous, sachant que cela n’a rien de formel. Ce découpage est relativement orthogonal, ce qui permet de travailler indépendamment sur un sujet ou un autre.

    • Création des bases de données
      1. Obtenir des sources de texte
      2. Analyse des langues
      3. Stockage des résultats
    • Reconnaissance de la langue
      1. Analyse et création des signatures
      2. Comparaison avec les signatures en base de données
      3. Calcul des estimations de probabilité pour chaque langue
    • Interface et interaction
      1. Soumission des données à analyser
      2. Mise à jour de la base de données
      3. Affichage des résultats

 État des lieux

Corpus d’apprentissage

J’ai quelques pistes pour les corpus d’apprentissage. J’ai expérimenté un peu avec Wikipedia qui permet de télécharger l’intégralité de son contenu à un instant t. C’est trié par langue et de nombreuses langues sont disponibles. Pour récupérer le contenu de Wikipedia, c’est mieux que :

quirysse@beluga:~$ wget --random-wait -r -p -e robots=off -U mozilla http://en.wikipedia.org/wiki/Main_Page

Le problème c’est que c’est gros. Très gros.

wilhelm@beluga:~/WikiCrawl$ ll -h *xml
-rw-r--r-- 1 wilhelm woodself 46G Jul  9 00:58 enwiki-latest-pages-articles.xml
-rw-r--r-- 1 wilhelm woodself 12G Jul 16 21:00 frwiki-latest-pages-articles.xml
wilhelm@beluga:~/WikiCrawl$
Espace occupé par deux langues sur Wikipedia

 

De plus, les fichiers sont codés en XML dans le langage de Wikipedia, ce qui après quelques tests, même après avoir enlevé les tags XML, on trouve beaucoup d’occurrences de  » [[ »  et autres balises du genre. Ça reste quand même une option mais un peu de préparation de la base de données s’avèrera nécessaire. Il y a une piste avec European Parliament Proceedings Parallel Corpus 1996-2011. C’est d’ailleurs ce qui a été utilisé dans l’article cité plus haut.

Analyse

La génération d’histogrammes d’unigrammes, de bigrammes et de trigrammes n’est pas un souci en soi. Cependant, il faut penser au codage Unicode et comme l’UTF-8 semble tout indiqué, il faut gérer le fait qu’un caractère puisse être composé d’un nombre variable d’octets. Un article complet sur le sujet est en préparation, puisque grâce à cette bibliothèque on peut arriver rapidement  à une solution.

Stockage

Les histogrammes, on en fait quoi ? Ils peuvent être longs à générer. On peut vouloir les mettre à jour en utilisant de nouveaux corpus et de nouvelles langues. Alors SQL, fichier maison ? A voir.

Détection de la langue

De façon naturelle on pense au cosinus, mais ça cause certaines difficultés. Je pense plutôt à une erreur RMS ou une distance euclidienne sur les dimensions présentes dans le vecteur d’entrée. Et puis qu’est-ce qu’on fait des hapax et des n-grams très rares. On les garde ou on nettoie le vecteur d’entrée ? Rien n’est fixé mais on en reparlera.

Interface

Évidemment, tout commence toujours pas une série de petits scripts bash et 2 ou 3 mini programmes en C++. Mais au final, une API REST pour obtenir les probabilités des différentes langues sachant une signature pour un texte en entrée, ça serait sympa, non ? Et une page web où l’on verrait les probabilité évoluer en même temps qu’on entre du texte dans un champ, ça serait encore mieux ! C’est un dossier qui est encore un peu loin, mais il y a du potentiel pour faire un système agréable. Pour l’instant, on va en rester au bash…

Conclusion

Donc, voilà où on en est. L’UTF-8 est à peu près réglé (article à suivre). Reste à faire le reste. C’est à dire, à peu près tout…

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *